

PEOPLE on the **STREETS**

Kelly McGillivray Peoplecount

We set out to find...

HOW MANY people WALK on streets?

We wanted to estimate...

24-hour mid-block count

2 sides of the street
2 directions of travel

Across an ENTRE city!

I'm going to tell you...

HOW we did it WHAT we created

WHY it's useful

We did field work...

7 cities

560 pedestrian counts 60 km of sidewalk

FIELD TESTS

3 COUNT SOURCES:

Stationary cameras Mobile camera Manual counts

Stationary cameras – 18 hour counts

Mobile camera – 12 hour counts

Manual counts – 5 min./block/hour

Chicago Pedestrian Counts

WHAT we created

CHALLENGES

Economical

Universal data sources

Apply to ANY city

VARIABLES Tested

Local

Census

Spatial

LOCAL Variables AADT Road Class Transit Stop One Way

Pedestrian Volume vs AADT

CENSUS Variables Population density Employment density Mode Choice

We created a new variable...

Pedestrian Density

= Daytime Population

X % Non-Drivers

Chicago Pedestrian Density

SPATIAL Variables

Axial line length Average depth

What are spatial variables?

AXIAL Mapping

- Draw lines of sight
- ✓ 1 km buffer
- Analyze with software
- ✓ 13 integration variables

Sample Axial Map

AVERAGE DEPTH

steps from one point in system to all other points.

 $A \rightarrow B \qquad 1$ $A \rightarrow E \qquad 1$ $A \rightarrow D \qquad 2$ $A \rightarrow F \qquad 2$ $A \rightarrow F \qquad 2$ $A \rightarrow C \qquad 3$ Avg Depth of A = 9/6 = 1.5

Manhattan Axial Map Showing Average Depth

Manhattan Estimated Pedestrian Volumes

Pedestrian Model Accuracy

Pedestrian Count Locations

WHY it's useful

USES FOR PED MODEL?

COMMERCIAL

- \checkmark location analysis
- ✓ retail
- ✓ real estate
- ✓ outdoor ads
- ✓ BIAs

PLANNING

- ✓ cheap counts
- ✓ ped LOS
- ✓ ped signals
- ✓ ped crossings
- \checkmark accident rates

LIMITATIONS

- ✓ Granularity 1 to 5 blocks
- Anomalies tourist areas
- Seasonality not adjusted

WHAT'S NEXT?

Pedestrian Paths Modelled Now

Neighbourhood Level Detail

Get to know YOUR PEOPLE on the STREET

"Thank you."

Kelly McGillivray, P.Eng. President & Chief Methodologist kelly@peoplecount.biz